Basics of Tesla Coil

Make Your Own Tesla Coil

Sequence

Theory: What you need

- 1. Knowledge of Basic LRC Circuit : Transient and AC Response
- 2. Circuit Analysis Software:

Download and use it for free

https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html

Tesla Coil: Not an Ordinary Transformer

Though it looks like a transformer, however not an ordinary one. Energy is transferred from the primary to the secondary by carefully adjusting the *coupling* and the secondary is tuned at *resonance* to achieve maximum voltage

Uses two effects: Resonance and Coupling

A Simple LRC Series Circuit and Resonance

Analysing The LRC Circuit with LTSpice

Voltage Across Capacitor

AC Source Replaced by Transformer Coupling

Simulation of a Coupled Circuit

10 Ω is added to limit the current to 1 A

Instead of Source, Energy Supplied by Transformer Coupling

Important Points to Note

Tesla Coil as a Tuned LCR Circuit

To Build a Successful Tesla Coil

- 1. Proper tuning to resonant frequency
- 2. Optimum Coupling (in our case , K = 0.1)
- 3. Low capacitance

 $Vc = I/\omega C$ Lower the capacitance Higher the voltage

4. If Top load is removed, capacitance will be lower. However, resonant frequency will go high. Component choice and tuning is more difficult.Power loss at the switching device will go higher.

Vc 000

Primary Coil Construction

Primary Coil Construction

White acrylic sheet was used to make the coil format.

A jigsaw was used to cut the shapes and two-part epoxy was used to join the parts.

Parts Used for Secondary Coil

These parts are bought from local hardware store (Homedepot)

1.5" x 0.75" Bushing Adapter

3" x 2" ABS Reducing Coupling

4"X3" Adjustable Closet Flange Hub

As a coil Base

ABS PIPE 3 inches x 3 ft CELL CORE

Copper wire is wound on this pipe

Secondary Coil Construction

Primary and Secondary Coil-Data at a Glance

Secondary Coil: New Tesla coil Data: Coil Dimension: Diameter: 8.95 cm (3.5 inches), Length: 33.5 cm (13.2 inches) Wire Gauge: AWG# 22, Number of Turns, N = 515

R= 13.5 Ohm L=6.7 mH Considering the top capacitance, resonant frequency: 460kHz Capacitance:~ 18pF

Primary Coil: Conical Number of Turns, N=6 Larger diameter: 23.5 cm Smaller diameter: 19 cm Width: 11 cm Calculated inductance: 8.1 uH

Secondary Coil and Tesla Coil Base

Tesla Secondary Coil : Photo

Coil-base on a plexiglass plate Sajjad Haidar

Top Load Construction

Bent to for toroid Aluminum sheet-disc And foil tape is used

Calculating the capacitance of a toroid:

D1: the major diameter of the D2: is the minor diameter of the ring of the toroid.

D1 =9.5" D2= 3"

This formula is using inches for measurements. Result is in pF.

C ~ 10.5 pF

Tesla Coil with Top Load

Calculated top load capacitance: C_T = 10.5 pF

Experimental Determination of Resonant Frequency

Experimental Setup to Determine the Resonance-Frequency

Resonant frequency found: 460 kHz

Inductance of the secondary coil: 6.7 mH

Distributed capacitance of the coil:

$$C_D = C - C_T = 18 - 10.5 = 7.5 \, pF$$

Equivalent Circuit Simulation in LTSpice

Primary inductance, $L1 = 8 \text{ uH} +$ inductance ~2 uH, L1 ~10 uH	connecting wire	• • • • • • • • • • • • • • • • • • •	V_{T}	c	
,	· · · · · · · · · · ·	· · · · · · · · · · · · · ·		318p	
To protect the main switching cire (MOSFET) a series resistance (~ Ohm) is used. R1 ~ 5	cuit ~5	R1	K L1 L2 0.1	R2	
		5	L1 L2		· · · · · · · · ·
		V1	ο 10μ 6.7m		· · · · · · · · ·
		SINE() AC 48 0			

Simulation Result

Practical Tesla Coil Driver Circuits

Simulation: Simple Slayer Exciter Circuit to Test the Tesla Coil

Simple Slayer Exciter Circuit to Test the Tesla Coil Simulation Result

Simulated Tesla Coil Voltage

Test of the Simple Slayer Exciter Circuit

To Achieve Higher Voltage (Bigger Arc) Modified Circuit is Used

110V DC Power Supply for Tesla Coil

F-271U Primary: 115V Ac Secondary: CT, 40V, 2A Power 80 VA

Class-E MOSFET Slayer Exciter Circuit, Driving Voltage: 110V DC

Rotating Ionic Propulsion with Tesla Coil

https://www.youtube.com/watch?v=U2 QSbAbUgPc&feature=youtu.be

https://www.youtube.com/watch?v=VQNjBilo0 aY&feature=youtu.be

Tesla Coil with Jacob's Ladder

A pair of steel-wire is bent as shown to form a Jacob's ladder. One terminal is connected to the ground and the other to the top load. Arcing starts from the bottom and reaches the top. Cycle begins

Photo and Video-link of the Tesla coil Connected to the Jacob's Ladder

https://www.youtube.com/watch?v=ZH ksr7DKXZ4&feature=youtu.be

Tesla coil without the Top Load

https://www.youtube.com/watch?v=nxPptbAT3AE&feature =youtu.be

Manually Tuned Tesla Coil Driver

Practical Half-Bridge Driver

Using this half-bridge driver circuit shows similar kind of effect as that of the class-E Slayer exciter circuit. However, difficult to tune. Tuning is achieved by two knobs: coarse and finetuning

Reference

Best: lot of workable practical examples

https://www.stevehv.4hv.org/SSTCindex.htm

